3.344 \(\int \frac{(a B+b B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=179 \[ \frac{2 b^2 B \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}-\frac{2 b B \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a d \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 B \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a d \sqrt{a+b \cos (c+d x)}} \]

[Out]

(-2*b*B*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(a*(a^2 - b^2)*d*Sqrt[(a + b*Cos[c + d
*x])/(a + b)]) + (2*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(a*d*Sqrt[
a + b*Cos[c + d*x]]) + (2*b^2*B*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.423576, antiderivative size = 179, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 34, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.235, Rules used = {21, 2802, 3059, 2655, 2653, 12, 2807, 2805} \[ \frac{2 b^2 B \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}-\frac{2 b B \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a d \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 B \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((a*B + b*B*Cos[c + d*x])*Sec[c + d*x])/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(-2*b*B*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(a*(a^2 - b^2)*d*Sqrt[(a + b*Cos[c + d
*x])/(a + b)]) + (2*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(a*d*Sqrt[
a + b*Cos[c + d*x]]) + (2*b^2*B*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{(a B+b B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx &=B \int \frac{\sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\\ &=\frac{2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{(2 B) \int \frac{\left (\frac{1}{2} \left (a^2-b^2\right )-\frac{1}{2} a b \cos (c+d x)-\frac{1}{2} b^2 \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac{2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}-\frac{(2 B) \int -\frac{b \left (a^2-b^2\right ) \sec (c+d x)}{2 \sqrt{a+b \cos (c+d x)}} \, dx}{a b \left (a^2-b^2\right )}-\frac{(b B) \int \sqrt{a+b \cos (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac{2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{B \int \frac{\sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{a}-\frac{\left (b B \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{a \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}\\ &=-\frac{2 b B \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a \left (a^2-b^2\right ) d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{\left (B \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{a \sqrt{a+b \cos (c+d x)}}\\ &=-\frac{2 b B \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a \left (a^2-b^2\right ) d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 B \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a d \sqrt{a+b \cos (c+d x)}}+\frac{2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 4.80388, size = 403, normalized size = 2.25 \[ \frac{B \left (\frac{4 b^2 \sin (c+d x)}{\left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}-\frac{\frac{2 \left (2 a^2-3 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}-\frac{4 a b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}-\frac{2 i \csc (c+d x) \sqrt{-\frac{b (\cos (c+d x)-1)}{a+b}} \sqrt{\frac{b (\cos (c+d x)+1)}{b-a}} \left (b \left (b \Pi \left (\frac{a+b}{a};i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )-2 a F\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )}{a \sqrt{-\frac{1}{a+b}}}}{(b-a) (a+b)}\right )}{2 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a*B + b*B*Cos[c + d*x])*Sec[c + d*x])/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(B*(-(((-4*a*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*
x]] + (2*(2*a^2 - 3*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a
+ b*Cos[c + d*x]] - ((2*I)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*Csc[
c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b
*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*EllipticPi[(a +
 b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*Sqrt[-(a + b)^(-1)]))/(
(-a + b)*(a + b))) + (4*b^2*Sin[c + d*x])/((a^2 - b^2)*Sqrt[a + b*Cos[c + d*x]])))/(2*a*d)

________________________________________________________________________________________

Maple [A]  time = 4.299, size = 377, normalized size = 2.1 \begin{align*} 2\,{\frac{B}{ \left ( a+b \right ) \left ( a-b \right ) a\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b}d} \left ( \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\,{\frac{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b}{a-b}}+{\frac{a+b}{a-b}}}b{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{-2\,{\frac{b}{a-b}}} \right ) a-{b}^{2}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\,{\frac{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b}{a-b}}+{\frac{a+b}{a-b}}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{-2\,{\frac{b}{a-b}}} \right ) +\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\,{\frac{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b}{a-b}}+{\frac{a+b}{a-b}}}{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2,\sqrt{-2\,{\frac{b}{a-b}}} \right ){a}^{2}-\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\,{\frac{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b}{a-b}}+{\frac{a+b}{a-b}}}{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2,\sqrt{-2\,{\frac{b}{a-b}}} \right ){b}^{2}+2\,{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(5/2),x)

[Out]

2*B*((sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*b*EllipticE(cos(1/2*d*x+
1/2*c),(-2*b/(a-b))^(1/2))*a-b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1
/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*
c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(
-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*b^2+2*b
^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/a/(a-b)/(a+b)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(
1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B b \cos \left (d x + c\right ) + B a\right )} \sec \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)*sec(d*x + c)/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B b \cos \left (d x + c\right ) + B a\right )} \sec \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)*sec(d*x + c)/(b*cos(d*x + c) + a)^(5/2), x)